- 19. The order is important in this problem. The number of ways to select 1 and 6 to form 16 is given by permutation  $_6P_2$ , not combination  $_6C_2$ .  $P(16) = \frac{1}{_6P_2} = \frac{1}{30}$ .
- 22. combination; 330
- **23.** permutation; 3,628,800
- 24. combination; 126
- **25.** permutation; 40,320
- **26.** permutation; 1,320
- **27.** combination(s); 630
- 28. a.  $\frac{1}{21}$ 
  - b.  $\frac{5}{42}$
- **29. a.** A permutation should be used because the order in which the beads are chosen matters.

$$P(DEB) = \frac{1}{10P_3} = \frac{1}{720}$$

**b.** A combination should be used because the order in which the beads are chosen doesn't matter.

$$P(\text{all vowels}) = \frac{{}_{3}C_{3}}{{}_{10}C_{3}} = \frac{1}{120}$$

**32. a.** In this case order matters, so a permutation must be used. Find the number of permutations of choosing 5 digits.

$$10P_5 = \frac{10!}{(10-5)!}$$

$$= \frac{10!}{5!}$$

$$= 30,240$$

There are 30,240 possible ways to choose the digits of a 5-digit number, one of which is the desired number 30429. This gives the following probability.

$$P(30429) = \frac{1}{30,240}$$

**b.** Since there are 5 digits, there are  $10^5$  possible codes, one of which is 30429. This gives the following probability.

$$P(30429) = \frac{1}{100,000}$$